The permutation entropy rate equals the metric entropy rate for ergodic information sources and ergodic dynamical systems

نویسندگان

  • José M. Amigó
  • Matthew B. Kennel
  • Ljupco Kocarev
چکیده

Permutation entropy quantifies the diversity of possible orderings of the values a random or deterministic system can take, as Shannon entropy quantifies the diversity of values. We show that the metric and permutation entropy rates—measures of new disorder per new observed value—are equal for ergodic finite-alphabet information sources (discrete-time stationary stochastic processes). With this result, we then prove that the same holds for deterministic dynamical systems defined by ergodic maps on n-dimensional intervals. This result generalizes a previous one for piecewise monotone interval maps on the real line (Bandt, Keller and Pompe, “Entropy of interval maps via permutations”, Nonlinearity 15, 1595-602, (2002)), at the expense of requiring ergodicity and using a definition of permutation entropy rate differing in the order of two limits. The case of non-ergodic finite-alphabet sources is also studied and an inequality developed. Finally, the equality of permutation and metric entropy rates is extended to ergodic non-discrete information sources when entropy is replaced by differential entropy in the usual way.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SOME ERGODIC PROPERTIES OF HYPER MV {ALGEBRA DYNAMICAL SYSTEMS

This paper provides a review on major ergodic features of semi-independent hyper MV {algebra dynamical systems. Theorems are presentedto make contribution to calculate the entropy. Particularly, it is proved that thetotal entropy of those semi-independent hyper MV {algebra dynamical systemsthat have a generator can be calculated with respect to their generator ratherthan considering all the par...

متن کامل

The Central Limit Theorem for uniformly strong mixing measures

The theorem of Shannon-McMillan-Breiman states that for every generating partition on an ergodic system, the exponential decay rate of the measure of cylinder sets equals the metric entropy almost everywhere (provided the entropy is finite). In this paper we prove that the measure of cylinder sets are lognormally distributed for strongly mixing systems and infinite partitions and show that the ...

متن کامل

The Shannon-McMillan theorem and related results for ergodic quantum spin lattice systems and applications in quantum information theory

The aim of this thesis is to formulate and prove quantum extensions of the famous Shannon-McMillan theorem and its stronger version due to Breiman. In ergodic theory the Shannon-McMillan-Breiman theorem is one of the fundamental limit theorems for classical discrete dynamical systems. It can be interpreted as a special case of the individual ergodic theorem. In this work, we consider spin latti...

متن کامل

Effective symbolic dynamics, random points, statistical behavior, complexity and entropy

We consider the dynamical behavior of Martin-Löf random points in dynamical systems over metric spaces with a computable dynamics and a computable invariant measure. We use computable partitions to define a sort of effective symbolic model for the dynamics. Through this construction we prove that such points have typical statistical behavior (the behavior which is typical in the Birkhoff ergodi...

متن کامل

A local approach to the entropy of countable fuzzy partitions

This paper denes and investigates the ergodic proper-ties of the entropy of a countable partition of a fuzzy dynamical sys-tem at different points of the state space. It ultimately introducesthe local fuzzy entropy of a fuzzy dynamical system and proves itto be an isomorphism invariant.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005